
El riñón biónico, a punto
de entrar en su fase de pruebas en humanos, combinará elementos electrónicos y
orgánicos y tendrá un tamaño similar al de los órganos cuya función asumirá, y
supondrá una mejora enorme para la vida de aquellas personas que deben conectarse
varias veces a la semana a un aparato externo de hemodiálisis porque sus
riñones fallan.
En la hemodiálisis, la
sangre del paciente fluye a través de un filtro que elimina los desechos
dañinos, minerales y líquidos innecesarios, y la sangre así tratada se devuelve
a su cuerpo, ayudando a controlar la presión arterial y a mantener el
equilibrio adecuado de sustancias químicas, como el potasio y el sodio.
El nuevo dispositivo que
está desarrollando un grupo de universidades estadounidenses dentro del
Proyecto Riñón (PR), filtrará la sangre de la persona con deficiencia renal de
forma continua, en vez de requerir visitas a un hospital que duran de 3 a 5
horas o más, y desde dentro del cuerpo, ya que se implantará en el paciente.
Este pequeño riñón
bioartificial, destinado a tratar la “enfermedad renal en etapa final” (ESRD,
por sus siglas en inglés), ofrecerá una nueva esperanza a aquellas personas
cuyos riñones ya no pueden atender las necesidades de su cuerpo y están a la
espera de recibir un trasplante, según los impulsores de este proyecto.
"Estamos creando un
dispositivo biohíbrido que puede imitar al riñón capaz de eliminar suficientes
productos de desecho como para que el paciente pueda prescindir de la
diálisis", señala el doctor William H. Fissell IV, nefrólogo y profesor
del Centro Médico de la Universidad de Vanderbilt, VU, en Nashville, Tennessee
(Estados Unidos). El doctor Fissell codirige el ‘Proyecto Riñón’, junto con el
doctor Shuvo Roy, bioingeniero y profesor de la Universidad de California, San
Francisco, UCSF, en Estados Unidos.
Células vivas en andamios
de silicio
Este riñón artificial
implantable quirúrgicamente incorpora un microchip de silicio que funciona como
un filtro, así como células renales vivas y según este nefrólogo “funcionará
bajo el impulso del corazón del paciente, filtrando la corriente sanguínea que
lo atraviesa”.
Llevará componentes
biológicos y tecnológicos y será del tamaño de una lata de refresco pequeña o
una taza de café, como para que pueda ser implantarlo en el cuerpo de un
paciente. “La clave de este dispositivo es su microchip, en el que se utilizan los
mismos procesos de la nanotecnología del silicio, que fueron desarrollados por
la industria de la microelectrónica para los ordenadores y equipos
informáticos”, según Fissell.
Los microchips son
asequibles, precisos y permiten fabricar unos filtros ideales, de acuerdo a
Fissell y su equipo, que actualmente están diseñando los poros de dicho filtro
‘uno a uno’, de acuerdo a la función que quieren que cumpla cada uno de estos
orificios. “Cada dispositivo tendrá aproximadamente quince capas de microchips filtrantes,
una encima de la otra, las cuales serán además el andamio en el que se alojarán
las células vivas de riñón que formarán parte de este dispositivo”, según
Fissell.
Fissell y su grupo
utilizarán células renales con vida que van a crecer sobre y alrededor de los
filtros de microchips, con el objetivo de que puedan emular las acciones
naturales de los riñones, de acuerdo a la Universidad de Vanderbilt. “Estas
células crecerán y formarán una membrana que será capaz de distinguir qué
productos químicos son nocivos y cuales son beneficiosos, para filtrarlos y que
luego el cuerpo pueda reabsorber los nutrientes que necesita y desechar los
residuos de los que necesita deshacerse”, explica el doctor Fissell.
Según sus creadores, este
dispositivo está fuera del alcance de la respuesta inmune, es decir de las
defensas del propio organismo, con lo cual el cuerpo no lo rechaza. Funcionará
de forma natural con el flujo sanguíneo del propio paciente, por lo que uno de
los mayores retos de los investigadores –según indican- consiste en tomar la
sangre de un vaso sanguíneo y empujarla eficazmente a través del dispositivo.
Buscando los poros perfectos
para la sangre
Los investigadores de
Vanderbilt explican que deben manejar y transformar el flujo sanguíneo habitualmente
pulsátil e inestable de las arterias, de modo que pueda moverse a través de un
dispositivo artificial, sin que se produzcan coágulos o daños. Para
conseguirlo, la ingeniera biomédica Amanda Buck, de la VU, utiliza en su
ordenador y visualiza en su pantalla modelos informáticos para refinar los
canales o poros del dispositivo, de modo que sangre circule por ellos de la
forma más suave posible. Luego fabrica prototipos con el nuevo diseño, usando
una impresora 3-D y después los prueba con un flujo de líquido.
El doctor Fissell señala
que tiene una larga lista de personas en diálisis deseosas de participar en el
primer ensayo, que según el ‘Proyecto Riñón’ podrían comenzar a finales de 2017
y completarse en 2020. La futura demanda del dispositivo que desarrolla junto
con el doctor Roy, de la UCSF, seguramente será elevada, ya que según la red de
obtención de órganos y trasplantes de Estados Unidos más de 100,000
estadounidenses están en la lista de espera para un trasplante de riñón, pero
el año 2015 solo 17,108 recibieron un órgano. Y según la Fundación Nacional del
Riñón más de 460,000 estadunidenses tienen ESRD y 13 personas mueren a diario
esperando un riñón.
El riñón bioartificial,
concebido para un uso permanente y que también podrían recibir algunos
pacientes con su función renal muy reducida, pero sin un fallo total, se
compone de dos módulos que trabajan en conjunto para eliminar los desechos,
según el PR.
Primero, un módulo de
hemofiltro procesa la sangre entrante para crear una solución acuosa
ultrafiltrada que contiene las toxinas, azúcares y sales disueltos, y en
segundo lugar, el módulo biorreactor, que aloja las células vivas de riñón,
procesa el líquido ultrafiltrado y envía los azúcares y sales de nuevo a la
sangre. En este proceso, el agua es reabsorbida por el cuerpo, concentrándose
el material de desecho ultrafiltrado en forma de orina, que se dirigirá a la
vejiga para su excreción, según el PR.
Fuente:
Debate
Noticias
e Investigación
No hay comentarios.:
Publicar un comentario
Dime Si fue util esta informacion? Gracias.